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Abstract
We choose the squeezed vacuum state as a one-parameter trial wavefunction,
to minimize the energy of an anharmonic oscillator, with a polynomial
perturbation potential. Using the optimal vacuum state obtained, we generate
the optimal generalized number state basis, and set up the Hamiltonian in
the normal-ordered form. Then, truncating the basis, we produce finite-
dimensional matrices in a simple manner, and find their eigenvalues by standard
methods. We will apply our method to the Morse potential, whose exact
eigenvalues are known, as a check on the accuracy of the results that we have
derived. Two models of the double well and the quartic potential are considered
as examples.

PACS number: 03.65.Ge

1. Introduction

The anharmonic oscillator is an important model in the study of many problems in physics.
However, in contrast to the harmonic oscillator, it cannot be solved analytically, and thus one has
to resort to approximation methods for its solution. The anharmonic quantum oscillator with
quartic perturbation has been studied extensively in the past [1–10]. The quantum anharmonic
oscillator with sextic, octic, and the general one-perturbation term, λxm, has also been studied
more recently [11–17]. The aim of this work is to calculate the energy eigenvalues of the
quantum anharmonic oscillator, with a polynomial perturbation potential, whose Hamiltonian
is given by

H = p2

2
+

x2

2
+

M∑
m=0

λmxm = H0 +
M∑

m=0

λmxm (1)

where H0 is the Hamiltonian for a harmonic oscillator with the mass and the angular frequency
assumed equal to unity. In fact, we may cast any Hamiltonian

H = p2

2
+ V (x) = H0 − 1

2
x2 + V (x) (2)
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in the form (1) if the potential V (x) is a polynomial, or if it can be expanded in a series and
truncated into a polynomial as an acceptable approximation. Thus, our work covers a wide
range of Hamiltonians, and not just the ones traditionally called ‘anharmonic oscillators’.

We shall follow a two-step approach to solve the Hamiltonian (1). First, we choose a
squeezed vacuum state as a one-parameter trial wavefunction, and minimize the energy of
the system by variation [4]. Then, using the optimal vacuum obtained, we construct the
optimal generalized number states basis, and use it to set up the Hamiltonian in terms of
the generalized creation and annihilation operators in normal-ordered form [14]. Finally,
considering a truncated basis, we produce a finite-dimensional matrix, whose eigenvalues we
obtain by standard methods.

The organization of the paper is as follows. We introduce the generalized number states and
a theorem regarding the normal-ordered form of a function of the second-quantized operators in
section 2. The normal-ordered form of the Hamiltonian, and its matrix representation, are de-
rived in section 3. We specialize our work to the famous Morse oscillator, whose exact solutions
are known, as a check on the general results that we have derived, in section 4. Two models,
of the double well and the quartic potential, are also considered as examples in this section.

2. Generalized number states

The ordinary annihilation and creation operators for the harmonic oscillator with the
Hamiltonian H0 are defined by

a = x + ip√
2

(3)

a+ = x − ip√
2

(4)

where they satisfy the commutation relation

[a, a+] = 1. (5)

We now perform a Bogoliubov transformation [4], to define the generalized annihilation and
creation operators b and b+:

b = a − ta+

√
1 − t2

(6)

b+ = a+ − ta√
1 − t2

(7)

where t is a real number which satisfies |t | < 1, and the commutation relation[
b, b+

] = 1 (8)

holds.
We now define the normalized squeezed vacuum state |0, t〉 by

|0, t〉 = (1 − t2)(1/4)e(t/2)a+2 |0〉 (9)

where b is its annihilation operator, and we have

b|0, t〉 = 0. (10)

The generalized number states, |n, t〉, may be generated by application of the operator b+, n

times, to the squeezed vacuum state |0, t〉; we write

|n, t〉 = (b+)n√
n!

|0, t〉 (11)

where {|n, t〉} is a complete set and will be used to set up the Hamiltonian matrix later.
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It is worthwhile to make a parenthetical but interesting observation at this point:
constructing the generalized number operator b+b, using equations (3)–(7), we find

H� = b+b +
1

2
= p2

2�
+

�x2

2
(12)

where we have defined the real parameter � = 1−t
1+t

. Now, comparing the above result with
H0, we conclude that the transformation that we have used is mathematically equivalent to
rescaling the Hamiltonian H0, according to the ansatz x → √

�x. Thus, the parameter �

gains a central role in our subsequent calculations, although we are not concerned with the
rescaling aspects in our work. Using the eigenfunctions of the rescaled harmonic oscillator
Hamiltonian is a standard method and helps to simplify some calculations [18, 19].

We also need to prove a theorem regarding the normal-ordered form. Let f (b, b+) be an
operator function of the generalized creation and annihilation operators b and b+; we may use
the commutation relation (8) to write this function in the so-called ordered form, in which all
the powers of b stand to the right of all the powers of b+. We also define the operator function
: f (b, b+) :, which is obtained from f (b, b+) by moving all powers of the annihilation operator
b to the right, without application of the commutation relation (8). Using the Baker–Hausdorff
formula, we write

exp [α(b + b+)] = exp

[
α2

2

]
exp(αb+) exp(αb) = exp

[
α2

2

]
: exp [α(b + b+)]:. (13)

Now expanding both sides of the above equation in powers of α, and equating the
coefficients, we find

(b + b+)m =
[m/2]∑
k=0

m!

2kk! (m − 2k)!
:(b + b+)m−2k:

=
[m/2]∑
k=0

m!

2kk!

m−2k∑
j=0

(b+)m−2k−j bj

j ! (m − 2k − j)!
. (14)

This gives the normal-ordered form of the function (b + b+)m, which has also been derived by
iteration methods in [16]. We will use this result later, to construct the Hamiltonian matrix
elements, in the generalized number state basis.

3. Hamiltonian matrix and variational method

Using equations (3) and (4), the second-quantized form of the Hamiltonian (1) is given by

H = 1

2
+ a+a +

∑
m

λm

(
a + a+

√
2

)m

. (15)

Now, using equations (6), (7) and (14), and expanding the binomial coefficient in the last, we
write H in terms of the normal-ordered product of the operators b and b+ as follows:

H = 1

2
+

(1 − �)2

4�
+

1 + �2

2�
b+b +

1 − �2

4�
(b

2
+ b+2

)

+
M∑

m=0

λm

(2�)(m/2)

[m/2]∑
k=0

m−2k∑
n=0

m!(b+)m−2k−nbn

2kk!n! (m − 2k − n)!
(16)

where the parameter � = 1−t
1+t

has already been defined after equation (12).
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Now, we use the squeezed vacuum state as a one-parameter trial wavefunction to find the
expectation value of the Hamiltonian H . We obtain

ε (�) = 〈0, �|H |0, �〉 = 1

2
+

(1 − �)2

4�
+

{M}∑
m=0,2,4,...

λmm!

2m�(m/2) (m/2)!
(17)

where {M} denotes the largest even number which is equal to or less than M . Minimizing
ε(�), we find the equation

1 − 1

�2
o

−
{M}∑

m=2,4,...

λmm!

2m−2�
(m/2+1)
o [(m/2) − 1]!

= 0 (18)

which we solve numerically to obtain the value of �o, the optimal value of �.
Having found �o, we now use the optimal generalized number states

|n, �o〉 = (b+)n√
n!

|0, �o〉 (19)

to set up the matrix representation for H given by equation (16). We find

Hij =
[

1 + �2
o

4�o

+
1 + �2

o

2�o

j

]
δij +

1 − �2
o

4�o

{
[j (j − 1)]

1
2 δi,j−2 + [(j + 1)(j + 2)]

1
2 δi,j+2

}

+
M∑

m=0

[m/2]∑
k=0

m−2k∑
n=0

λmm!
[
j ! (j + m − 2k − 2n)!

] 1
2

(2�o)(m/2)2kk!n! (j − n)! (m − 2k − n)!
δi,j+m−2k−2n. (20)

This is an infinite-dimensional matrix, but we can deal with an N -dimensional one, if we
truncate the basis by limiting the value of n in equation (20) to n � N − 1. Then, we use
a diagonalization method or appropriate software to find the low-lying eigenvalues of the
oscillator. We have used Matlab� to obtain our numerical results.

4. Accuracy check and examples

We first apply our method to the one-dimensional Morse oscillator with the Hamiltonian

H1 = p2

2
+ De(1 − e−αx)2 (21)

where De and α are the depth and the range parameter, respectively, and the mass of the
oscillator is put equal to unity [20, 21]. Assuming h̄ also equal to unity, the exact energy
eigenvalues are given by

En = α
√

2De

[(
n +

1

2

)
−

(
n +

1

2

)2
α√
8De

]
. (22)

We can also expand H1 in the following form:

H1 = H0 +
∞∑

m=2

λm (α, De)x
m (23)

where
∞∑

m=2

λm (α, De) xm = [
Deα

2 − 1
2

]
x2 + De

[−(αx)3 + 7
12 (αx)4 − 1

4 (αx)5 + 31
360 (αx)6 − · · ·].

(24)
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Table 1. Energy eigenvalues for the Morse oscillator with α = 1, De = 200, �o =
9.099 025 893 345 88 and 23 perturbation terms.

N E0 E1 E2 E3

10 9.880 031 9140 28.918 707 977 47.052 872 4878 64.806 109 6161
20 9.875 001 8376 28.875 033 730 46.875 450 6843 63.877 855 3192
30 9.875 000 0037 28.875 000 083 46.875 000 6713 63.875 003 3686
50 9.875 000 0000 28.875 000 000 46.875 000 0000 63.875 000 0000
Exact 9.875 28.875 46.875 63.875

Table 2. Energy eigenvalues for the Hamiltonian H2 with �o = 2.000 000 000 000.

N E0 E1 E2 E3

10 1.808 714 77 1.900 771 31 4.385 255 38 5.616 193 58
20 1.800 821 70 1.896 507 20 4.370 514 70 5.573 382 97
30 1.800 813 51 1.896 505 39 4.370 466 78 5.573 350 43
50 1.800 813 49 1.896 505 38 4.370 466 73 5.573 350 20

100 1.800 813 49 1.896 505 38 4.370 466 73 5.573 350 20

The Hamiltonian (21) is now cast in a form suited to our method. We just have to provide the
values of α, De, �o, the number of perturbation terms that we want to use and the dimension of
the Hamiltonian matrix to the computer program to find the eigenvalues. We have compared
our numerical results with the exact values computed from equation (22) in table 1. As the data
in table 1 reveal, increasing the dimension of the Hamiltonian matrix increases the accuracy
of the results. Moreover, the method yields results that are more accurate for the lowest-lying
states. The convergence and the accuracy are very good in general; although we have truncated
the series in equation (24) and only 23 perturbation terms are considered, the relative error for
all the energy entries is of the order of 10−12 or less for N = 50.

Encouraged by the above results, we now consider the following Hamiltonians as useful
examples:

H2 = p2

2
+ (x2 − 2)2 = H0 + x4 − 9

2x2 + 4

H3 = p2

2
+ (x2 − 2)4 = H0 + x8 − 8x6 + 24x4 − 65

2 x2 + 16

H4 = p2

2
+ λx4 = H0 − 1

2x2 + λx4.

(25)

H2 and H3 are both double-well Hamiltonians, and their eigenvalues are shown in tables 2
and 3 respectively. Obviously, H3 provides a higher potential barrier than H2, and this fact is
reflected in the much smaller values for E1 − E0 and E3 − E2 in H3 than in H2. The relative
errors for all the entries in table 2 with N = 50 are of the order of 10−9 or less, and they are
of the order of 10−6 or less in table 3 with the same N . The Hamiltonian H4 represents a
quartic potential well and its energy eigenvalues are shown in table 4. The convergences of
the eigenvalues in this table are faster than in the previous two, and with N = 50 the relative
error for all the entries is of the order of 10−9 or less.

Finally, considering the convergence and the accuracy of the results, our work may be
considered as a simple and reliable method for obtaining the eigenvalues of any Hamiltonian
represented by equation (1).
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Table 3. Energy eigenvalues for the Hamiltonian H3 with �o = 4.882 928 426 153.

N E0 E1 E2 E3

10 2.517 422 46 2.585 969 28 8.614 019 68 8.882 024 49
20 2.449 174 45 2.452 622 41 8.244 231 87 8.329 536 37
30 2.446 807 90 2.449 915 01 8.234 083 45 8.316 594 35
50 2.446 745 06 2.449 838 32 8.233 745 67 8.316 211 76

100 2.446 744 74 2.449 838 16 8.233 743 94 8.316 210 73

Table 4. Energy eigenvalues for the Hamiltonian H4 with λ = 1 and �o = 2.000 000 000 000.

N E0 E1 E2 E3

10 0.668 030 82 2.393 758 46 4.699 077 62 7.346 184 56
20 0.667 986 26 2.393 644 10 4.696 795 74 7.335 732 08
30 0.667 986 26 2.393 644 02 4.696 795 39 7.335 730 00
50 0.667 986 26 2.393 644 02 4.696 795 39 7.335 730 00

100 0.667 986 26 2.393 644 02 4.696 795 39 7.335 730 00
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